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In an eavrlier report on tidal mixing in estuaries [1]* an
equation for the diffusion of a solute in an essentially vertically
homogeneous estuary in which the major infiue:ices affecting the
movement and mixing of fluld are the tides and river flow is

derived, namely

as _§ -1 0 (x2 )
(o] at + R = D ax(x %&) + Q(X,t), (1/

where e 1s the time average of the estuary cross-section over
a tidal cycle, assumed here to be independent of both
X and t3

R is the river discharge and has dimensions L’T-l;

D is a positive constant having dimensions L2T =L and

is defined in Eq. 116 of reference [1l];

q 1is the amount of solute ‘added externally and has
dimensions ML™IT” ;

s 1s the concentration of the solute, having dimensions
ML ;

X 1s the distance along the estuary, measured downstream
from the position at which the moilon in the estuary
due to the tides is assumed to be zero.

In this report we congider several solutions of (1l); in the
first s is the concentration of salinity in the estuary, R is
a function of time and q(x,t) = O; in those following, s is the
concentration of an externally introduced solute, R is constant

and @ 1s assumed tco depend only on X,

We proceed then with the solution of

83 + R 83 = p 0 (4% 35
c = = ax(x ax) (2)

in which R = R(t), and D and (a + b) are constants, It is assumed
that the time variation of R is sufficiently small so that
(a + b) %% is small relative to the other terms in (2) and

hence we use the procedure of successive approximations in the

¥  Numbers in sm
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solution of (2).

The boundary conditions to be placsd on each of the succes=-
sive approximations of s are that the salinity at the imouth of
the estuary he o, a constant, and that the salinity 2t sowme
point upstream be zero., Since the river discharge 1s a function
of time ve wish to permit the distance, L, from ti:is point to the
mouth (the effective length of the estuary) to very with time,
in which cace it is convenient to choose our coordinate system
witl origin at the mouth of the estuary, However, with this
shift in the origin the term x2 in (2), which 1is proportional to
the squere of the distance moved by a particle due tc the tides,

must be replaczed by (L + x)2 so that we now have

3s s -p 2 2 3s )
Cat+Rax—Dax[(L+x) '63{':]’ (3¢

in which R and L are assumed to be known functions of time, It
must also be assumed that R and L do not very significantly over
a tidol period in order that the derivation which lecacs to equa=
tion (1) remain valid, Physically, this appears to be a reosone
ablc assumption.

\ie now define successive approximations s, sl; vee to tho

solutiorn of (3) by

-

2 3sg - 0s
DAL+ x)° =2]=R 2 (4)
a 3 b
D 'a—'[(L+ X)2 a ]xR-—B-l-C 'a'én:;" n=1’2,000 (4'01)

where the s (x,t) (n=0,1,2,,..) arc assumed to satisfy tho
boundory conditions

sp(0,t) =6 for all t; (5)

Sp(=L(t),t) =0 for ell . (6)
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Integrating (4) we have

D(L + x)° §§Q -~ Rsy = £4(%) . (7)
Here, as well as in the succeeding equations, the f4(t) (i=1,2,...)
will be uscd to denote arbitrary functions of time vl:ich will bhe
determined by the boundary conditions (%) and (6), Iliultiplying

both sides of (7) by the integrating factor

R
1 oDUL+XY
(L + x)2
and integrating, we have
-R
s {%,t) = = SRS fz(t)eD(L*"5 : (8)
_ R :
Imposing (5) and (6) on this solution wo have o
f(ty =0, £,(t) =0ePl
so that- ' B(l 1 )
sol{xyt) PO R - (9)-
Integrating (4.1) we have, for sy(x,t),
b
Os ; 68
{ 2 1 -Rs, = -9 %
D{L + x) e 1= P dx + f3( p (10)
-0

The lover 1limit in the«infegfal in (10) is set equal to -L merely
in order to simplify-the_application of the boundory coaditioms.
As with (7), ve multiply both sides of (10) by the integrating

factor

R
1 D(L+x)
D(L+x)2

cnd integrate, obteining

X
=R R
. e Os
sl(::,t) = ceDGTX; &------L eD(L"'Xj ( el % X =
)
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+ £,(t)eP xS (11)

1

3(t)
R

the lover limit of the iIntcgration cgain being chosen in order
tz simplify the cpplicction of the boundery conditions, Consider~
ing the double integrcol in (11) we have, upon integreoting by pertg

b3

¢
=

Substituticn of (12) in (11) then gives

X X
| D{i+x) 9s S
0 -

s
;}”

[ &1
~
3¢

72 o - §

o

<
R ® 4 .
il
From (2) wc have
Lo odb
3s Ry’ R' ,  RL! BE - o)
bl Y e R ) (14)

in whichk the primes dcnotc differentlotion with respect to time,
Thus the integruond g;g in two of the integrels in (13) remeins
finite over tho range of integration, L S x s O Further,
clthough the 1ntcgrend in the first integrel on the right hand
sice of (11) becomes infinite at x = -1,

X
Lim 0D(L+x5 X o DUL+x
o)

dx « 0O

of O
|l »

= ~L




0w =56202/3 5

Thus we may aprly btoundary concition (6) to (13) anc obtain
Then applying (5) to (13) we have
so tirat

X

«R
s1(x,t) = s (x,t) [1 +c-¢§- ePL } oD(I+X) 85o o
o

X
SR - R (RO
+ 3 dx-cRe J 3T dx] . (15)
8 -L

We consicer now the various terms in (15)., Fronm (14)

X X
< 1'3'% D(L+x) 8s R ' R! RL!
— \ -
6K ° le #dx“ﬁ%g[(lﬂ L+x+(L+x—)5]dx ki)
) o
(16)
= &X(B SB! 4 L eLt el o _ 1.
5R(T) * TR "ogL+x!+D(L e
Also from (14) we have
(o] X
R R 1 _ 1
& eDl‘ .a.s-o dY = = eD(L+ - j') .?-S.Q. av
oR ot ; R at )
=L -L
B < i =R
_ & D [ [(By'~ _R'_ 4 __BL' 4 DL+ g,
L
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R 7 , -R
¢ DL R - R! D{L+x
= 5F © ‘[(L) T+ dx
4
R A ' <R
R { (By' - (R _1DUHT oy
I)P ) L L +
=
él' B o R . R %
i 9%1 oDPL eD L+X ] nﬁl eD(L+x5 ieD(L+x)] .
|
; 45 - -7

Moting thst the last twe torms in the expression directly above

cancel each other, we have

o) >
Rl i
8s i - &) ds
h c D L+x L
5%? ‘ 559 dx 6% © ‘ 3?2 dx .
= 4
-L -L
R F R 17)
¢ (Ry! DL _ D(I4+x
* 5=(2) [e k (1 - yi)e dx
-L
z =R
eD L+x f (1 - a )eDZL+x5 dx
-L
where
R!
a ¥ (5)' (18)
L

so that

v/
o o)
]

8

(o

®
<R
- D(L+x) - R 1 _ade~y
(1 L+x)e dx ‘ ( 3 Ry)e dy
=1 Y
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Intczrating the first term in the integral on the right hand side

of the equation directly above bv parts we heve

s §._y (..9."2’. - !, LA
v2 y )y oy
R

[

D{L+x D(L+x D{l+x

so that
X -

. ®
‘ (1 - JL_)eDzL+x' dx = (L + x)eD"1¥¥) _ (4 4 By g A
L+x 4
-L
Substituting (19) in (17) we have
» Bed - )

(0] X

. 3s

s weege P Reege] -
- L

‘[ (20)

®
+ (¢ + 3)[9 L+x [
Finally, substituting (16) and (20) in (15), we have

[

s1(x,t) = sc(x,t){il + B 10g

DR

+ g (1 + -%) [M(7B——-7) - M(R )]}

where o0

M(x) = oX ( 253 dy . (22)

X

L+x

|
el + %4 - o
(21)

It may be noted that values of the funstion

- BEi(=x) = B—a
(=x) = = y

Nk_-—-——-——>8
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are tabulated (see [2].)

For the case in wnich the mean cross-sectional cres ¢ is
o onc. sl is
iGer.ticsl with that just given although the details of the inte-

a function of x the formal procedure leading to s

grations ore more cumbersomc, The term D él (x2 2&) in (1) must
X ox

then bo modified slightly ond may be obtained from Eg, (97) of

reference [1] .

We now consider the solution of (1) for the cecse in wnich

R 1s constant and q(x,t) = q(x) so that we may ossume s(x,t) = s(xh

Then (1) becomes

Dx2s" 4+ (2Dx = R)s! = - q(x) , (23)

in vwhich primes denote differentiation with respcct to x, The
change of both independent ond dependent variables given bv

s(x) = e"&(z) , z = 5%; (24)

simplifies (25) to the particularly nice form

V" -y ='£;—3‘“’—z q(-afg;) = f£(z) . (25)

Using; the method of variation of parameters the gcncral soluticn

to (25) is R_
z 2DL

v =\bl S\b2f(z)dz + E Y ;f(2)dz + clcz + 020'2 ;

@® Z

wherc cy ond ¢, are arbitrary constants and ¢1 and\b2 ore two

solutions to the homogencous equation V" «¢ = O such that
' '
N 2 N

for wnich convanient choices arc

AR PR

BEadaM L
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The particuler choi.e for the limits of integraotion in (26) cre

made in order to simplify the applicatior of the bounccry condi-

ticns, Thus

2 ..
! 2DL
T - -z ~2622q(_R_)dz + cq6%

P(z) = - iR 2 Q(E%Z)dz 55 J z"%e q(EBE) cq o

20 2

+ cae'z.
Substituting (24) in (26.1) ge now have
0 =R A =R

s(x) = ﬁ S q(x)dx + % eDX [ ePXq(x)dx + c, + czer (27)

o X

‘le consider two special coses, namely
(A) q(x) = Qd(x = x,) in which Q is o constent, 0 < x4 < L,
This choice for q(x) should anrly to the introcuction of
some solute at one point (x = xo) in the estuiry, Q 1s

tier. the rete of dischcorge of this solute into the estuary

(of dimensions MT-1),

(B) q(x) = q in which q is constant over the rcnge 0 < x < L,
Tuis choice for q(x) correcsponds to introduvction of solute
uniformly over the entire cffective length of tiie estucry
and might cpply in thc Investigotion of grouvnd scewncge, The
total rote of discharge of thc solute into the csthery over
the renge 0 < x < L is then qL,

For q(x) =as given in (A4), (27) becomes

Y-

-R [ R R

. Dx \5§ ! Dx
s(x) = @) o(x = x Jdx + 2 o ¢PX b(x = x)dx + ¢ + cpo .

o]
b3

)
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Thus if we impesc the boundory conditions s(0) = s{(L) = O

(s(0) bveing set equal to zero since there is no meclhionism to
carry the solute upstrecam of the point x = 04 ot which point the
motion in thc cstucry duc to the tides is zerogy ond s(L) being
sct cquel to zero because of the cssonticlly infinite rescrvoir

provided by the ocean at the mouth of the estucry) then
I

cq * 0, Cp = = % cDL ’
so thet
X L o
5| o BE - %)
‘v = X x 0
s(x) = % ‘ (X - xo)dx + % C } ¢’ d(x = x,)dx - & c
o X (28)
which may be written in the form
Rl _4d
(& - d) g -
s(x) = g[og Xo X' _PL X 1, 0 . x < Xgq
(29)
Rk . 1) <
s(x) = %[1 -ePlL X3 X < x =1
For q(x) as given in (B), (27) bvecomes
L
20 A -
s(x) = %% & % aDX J e’ dx + 0y + coe .

X

Again, imposing the boundary conditions s(0) = s(iL) = O we have

L
=R { %L
¢y =0 since 1im ¥ | 6®* ax = 0
X 40 )
X
and

R
C2=-QLGDL

R

&

. reRPAN). ¥ &
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sc¢ that
Red .1 =R 08
s(x) = gf - % eD(% x) + % oPX S oP¥ ax . (30)

X

If ve let y = 1385" in the integral ir (30) then we have

R
L Dx
£ Y
X DX dx = g 95 dy
- y
b ¢ R
DL

(31)

i
R R Dx
=I£DL-xeDX+BX§};¥.dy
R
)4

after integrating by parts. Substituting (31) in (30) we have

<R VX

s(x) = % eﬁ; }' % dy . (32)
R

DL

It moy be interesting to compare the solute distributions
that result for q(x) zs given in (A) and (B) respectively;
assuming that the rates of dischorge or solute throughout the
entire effective length of the estuary are equal for the tvo
coses, 1,6,, qL = Q. In Fig. 1 R3/Q 28 o function of x/L is
plotted for R/DL:O.B, the volue givon for the Roritan River in a
poper by Arons and Stommel [ 3], The constant which they denote
by T 2nd coll the flushing number is equal to R/DL in tae
notctien used here., Values of the integral appeoring in (32) are
to be found in refercnce [2],

ot

"o

R TR R TR R T
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Figure 1 prcsents twe curves for the cese in vhich

q(x) = Qb(x - x,); in one xy/% = 0.4 and in the other xo/L = 0.8,

It may be ncted in perticulor that the solute density is appreciw

ably grecater over most of the estucry for the case in which

Xo/L = 0.4, It 1s to be hoped thot this scnsitivity of the

solute density upstrecom of the cxterncl source to the position

c¢f the source mav be used Lo chaock experimentally the validity

of the solutec daiffusiin equation (1) which we have been using,
Froem (29) we may note thot tho muximum value of s(x) occurs

et x = X, ‘n the casc in which q(x) = Qd(x -~ x4). In Fig. 2,

Rs(x,)/Q as o function of xo/L 1s ploticd. A possible opplication

of thc data given in Fig. 2 1s the determinction of thic maximum

distance from the mouth of an estuary ct which a known source of

pollution may be allovicd to dischorge into an estuary if specificed

limits are plceced on the permissible density of poilution in the

cstuory,
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Fig. 1. Bolute density as a
function of distanoce
along estuary,

L1 q(x) = Q8(x-x,), xo/L = 0.4
A2 q(x) = Q8(x~x4)y x,/L = 0.8
] Wx) = /L O0<x<lL
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Pig. 2. Maximm solute density as
a funotion of position of
external source in estuary.
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